新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

光波导模式:偏振、耦合与对称(英文 影印版)

收藏
  • 大小:51.75 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
光波导模式:偏振、耦合与对称(英文 影印版)
作者:(美)布莱克(RichardJ.Black) 著
出版时间:2012年版
内容简介
《光波导模式:偏振、耦合与对称(影印版)》是一本关于波导模式对称性分析的学术专著。在简要介绍传统导波光学内容的基础上,重点以光波导弱导微扰理论和群论作为理论分析手段,对单模和少模光波导,特别是单芯和多芯光纤的波导模式结构和分类进行了系统的介绍,并讨论了模式对称性分析方法对周期结构、非线性波导和光子晶体等复杂波导结构的应用。《光波导模式:偏振、耦合与对称(影印版)》的理论描述简洁,适合于具有较好的电磁理论基础,并对导波光学理论和群论有一定了解的科研人员阅读参考。
目录
PREFACE xi
ACKNOWLEDGMENTS xiii
Chapter 1 Introduction
1.1 Modes
1.2 Polarization Dependence of Wave Propagation
1.3 Weak-Guidance Approach to Vector Modes
1.4 Group Theory for Waveguides
1.5 Optical Waveguide Modes: A Simple Introduction
1.5.1 Ray Optics Description
1.5.2 Wave Optics Description
1.5.3 Adiabatic Transitions and Coupling
1.6 Outline and Major Results
Chapter 2 Electromagnetic Theory for Anisotropic Media and WeakGuidance for Longitudinally Invariant Fibers
2.1 Electrically Anisotropic (and Isotropic) Media
2.2 General Wave Equations for Electrically Anisotropic(andIsotropic) Media
2.3 Translational Invariance and Modes
2.4 Wave Equations for Longitudinally Invariant Media
2.4.1 General Anisotropic Media
2.4.2 Anisotropic Media with z-Aligned Principal Axis
2.4.3 \Diagonal\ Anisotropies
2.5 Transverse Field Vector Wave Equation for Isotropic Media
2.6 Scalar Wave Equation
2.7 Weak-Guidance Expansion for Isotropic Media
2.8 Polarization-Dependent Mode Splitting and FieldCorrections
2.8.1 First-Order Eigenvalue Correction
2.8.2 First-Order Field and Higher-Order Corrections
2.8.3 Simplifications Due to Symmetry
2.9 Reciprocity Relations for Isotropic Media
2.10 Physical Properties of Waveguide Modes
Chapter 3 Circular Isotropic Longitudinally Invariant Fibers
3.1 Summary of Modal Representations
3.1.1 Scalar and Pseudo-Vector Mode Sets
3.1.2 True Weak-Guidance Vector Mode Set Constructions UsingPseudo-Modes
3.1.3 Pictorial Representation and Notation Details
3.2 Symmetry Concepts for Circular Fibers: Scalar Mode Fields andDegeneracies
3.2.1 Geometrical Symmetry: C
3.2.2 Scalar Wave Equation Symmetry: CS
3.2.3 Scalar Modes: Basis Functions of Irreps of CSv
3.2.4 Symmetry Tutorial: Scalar Mode Transformations
3.3 Vector Mode Field Construction and Degeneracies viaSymmetry
3.3.1 Vector Field
3.3.2 Polarization Vector Symmetry Group: C
3.3.3 Zeroth-Order Vector Wave Equation Symmetry:Cs c
3.3.4 Pseudo-Vector Modes: Basis Functions of Irreps of CSvCv
3.3.5 Full Vector Wave Equation Symmetry:CSv Cv CLv
3.3.6 True Vector Modes: Qualitative Features via CSv CPvDCIv
3.3.7 True Vector Modes via Pseudo-Modes: Basis Functions ofCSv CvCIv
3.4 Polarization-Dependent Level-Splitting
3.4.1 First-Order Eigenvalue Corrections
3.4.2 Radial Profile-Dependent Polarization Splitting
3.4.3 Special Degeneracies and Shifts for Particular RadialDependence of Profile
3.4.4 Physical Effects
Chapter 4 Azimuthal Symmetry Breaking
4.1 Principles
4.1.1 Branching Rules
4.1.2 Anticrossing and Mode Form Transitions
4.2 C2v Symmetry: Elliptical (or Rectangular) Guides:Illustrationof Method
4.2.1 Wave Equation Symmetries and Mode-Irrep Association
4.2.2 Mode Splittings
4.2.3 Vector Mode Form Transformations for CompetingPerturbations
4.3 CBv Symmetry: Equilateral Triangular Deformations
4.4 C4v Symmetry: Square Deformations
4.4.1 Irreps and Branching Rules
4.4.2 Mode Splitting and Transition Consequences
4.4.3 Square Fiber Modes and Extra Degeneracies
4.5 Csv Symmetry: Pentagonal Deformations
4.5.1 Irreps and Branching Rules
4.5.2 Mode Splitting and Transition Consequences
4.6 C6 Symmetry: Hexagonal Deformations
4.6.1 Irreps and Branching Rules
4.6.2 Mode Splitting and Transition Consequences
4.7 Level Splitting Quantification and Field Corrections
Chapter 5 Birefringence: Linear, Radial, and Circular
5.1 Linear Birefringence
5.1.1 Wave Equations: Longitudinal Invariance
5.1.2 Mode Transitions: Circular Symmetry
5.1.3 Field Component Coupling
5.1.4 Splitting by xy of lsotropic Fiber Vector Modes Dominated bya-Splitting
5.1.5 Correspondence between Isotropic \True\ Modes andBirefringent LP Modes
5.2 Radial Birefringence
5.2.1 Wave Equations: Longitudinal Invariance
5.2.2 Mode Transitions for Circular Symmetry
5.3 Circular Birefringence
5.3.1 Wave Equation
5.3.2 Symmetry and Mode Splittings
Chapter 6 Multicore Fibers and Multifiber Couplers
6.1 Multilightguide Structures with Discrete RotationalSymmetry
6.1.1 Global Cnv Rotation-Reflection Symmetric Structures:IsotropicMaterials
6.1.2 Global Cnv Symmetry: Material and Form Birefringence
6.1.3 Global Cn Symmetric Structures
6.2 General Supermode Symmetry Analysis
6.2.1 Propagation Constant Degeneracies
6.2.2 Basis Functions for General Field Construction
6.3 Scalar Supermode Fields
6.3.1 Combinations of Fundamental Individual Core Modes
6.3.2 Combinations of Other Nondegenerate Individual CoreModes
6.3.3 Combinations of Degenerate Individual Core Modes
6.4 Vector Supermode Fields
6.4.1 Two Construction Methods
6.4.2 Isotropic Cores: Fundamental Mode CombinationSupermodes
6.4.3 Isotropic Cores: Higher-Order Mode CombinationSupermodes
6.4.4 Anisotropic Cores: Discrete Global Radial Birefringence
6.4.5 Other Anisotropic Structures: Global Linear and CircularBirefringence
6.5 General Numerical Solutions and Field ApproximationImprovements
6.5.1 SALCs as Basis Functions in General Expansion
6.5.2 Variational Approach
6.5.3 Approximate SALC Expansions
6.5.4 SALC = Supermode Field with Numerical Evaluation of SectorField Function
6.5.5 Harmonic Expansions for Step Profile Cores
6.5.6 Example of Physical Interpretation of Harmonic Expansion forthe Supermodes
6.5.7 Modal Expansions
6.5.8 Relation of Modal and Harmonic Expansions to SALCExpansions
6.5.9 Finite Claddings and Cladding Modes
6.6 Propagation Constant Splitting: Quantification
6.6.1 Scalar Supermode Propagation Constant Corrections
6.6.2 Vector Supermode Propagation Constant Corrections
6.7 Power Transfer Characteristics
6.7.1 Scalar Supermode Beating
6.7.2 Polarization Rotation
Chapter 7 Conclusions and Extensions
7.1 Summary
7.2 Periodic Waveguides
7.3 Symmetry Analysis of Nonlinear Waveguides and Self-GuidedWaves
7.4 Developments in the 1990s and Early Twenty-First Century
7.5 Photonic Computer-Aided Design (CAD) Software
7.6 Photonic Crystals and Quasi Crystals
7.7 Microstructured, Photonic Crystal, or Holey OpticalFibers
7.8 Fiber Bragg Gratings
7.8.1 General FBGs for Fiber Mode Conversion
7.8.2 (Short-Period) Reflection Gratings for Single-ModeFibers
7.8.3 (Long-Period) Mode Conversion Transmission Gratings
7.8.4 Example: LPol--LPn Mode-Converting Transmission FBGs forTwo-Mode Fibers (TMFs)
7.8.5 Example: LPol(--LPo2 Mode-Converting Transmission FBGs
Appendix Group Representation Theory
A.1 Preliminaries: Notation, Groups, and MatrixRepresentations
of Them
A.1.1 Induced Transformations on Scalar Functions
A.1.2 Eigenvalue Problems: Invariance and Degeneracies
A.1.3 Group Representations
A.1.4 Matrix Irreducible Matrix Representations
A.1.5 Irrep Basis Functions
A.1.6 Notation Conventions
A.2 Rotation-Reflection Groups
A.2.1 Symmetry Operations and Group Definitions
A.2.2 Irreps for C and Cnv
A.2.3 Irrep Notation
A.3 Reducible Representations and Branching Rule
Coefficients via Characters
A.3.1 Example Branching Rule for Cv D C2v
A.3.2 Branching Rule Coefficients via Characters
A.4 Clebsch-Gordan Coefficient for Changing Basis
A.5 Vector Field Transformation
REFERENCES
INDEX
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城