新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

无源定位技术:二次等式约束最小二乘估计理论与方法 王鼎等著 2018年版

收藏
  • 大小:61.17 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
无源定位技术:二次等式约束最小二乘估计理论与方法
作者:王鼎等著
出版时间: 2018年版
内容简介
  本书系统阐述了含二次等式约束的最小二乘无源定位理论与方法,全书共4大部分18章内容。第Ⅰ部分为基础篇(第1章~第3章),内容包括绪论、数学预备知识以及参数估计方差的克拉美罗界分析。第Ⅱ部分介绍无系统误差条件下含二次等式约束的最小二乘定位理论与方法(第4章~第9章),其中根据二次等式约束和辅助变量个数的不同以及二次等式约束数学模型的不同,共归纳总结出6类定位方法,并为后续章节中的定位方法奠定了基础。第Ⅲ部分介绍系统误差存在条件下含二次等式约束的最小二乘定位理论与方法(第10章~第13章),其中选择了第Ⅱ部分中的4类定位方法进行推广。第Ⅳ部分则将前面章节所介绍的方法推广至更加复杂的定位场景中(第14章~第18章),其中包括5种复杂场景,分别为多目标存在的场景、校正源存在的场景(校正源位置精确已知)、校正源位置误差存在的场景、未知偏置存在的场景以及未知偏置和系统误差同时存在的场景。本书可以作为高等院校通信与电子工程、信号与信息处理、控制科学与工程、应用数学等学科有关研究的专题阅读材料或研究生的选修课教材,也可作为从事通信、雷达、电子、导航测绘、航天航空等领域的科学工作者和工程技术人员自学或研究的参考书。
目录
第Ⅰ部分 基础篇
第1章 绪论 3
1.1 无源定位技术简述 3
1.2 含二次等式约束的最小二乘无源定位方法的研究现状 4
1.3 3种常见的无源定位体制及其定位观测方程的代数模型 4
1.3.1 3种常见的无源定位体制简介 4
1.3.2 常用定位观测方程的代数模型 6
1.4 本书的内容结构安排 9
第2章 数学预备知识 12
2.1 矩阵理论中的若干预备结论 12
2.1.1 矩阵求逆计算公式 12
2.1.2 (半)正定矩阵的基本性质 14
2.1.3 Moore-Penrose广义逆矩阵和正交投影矩阵 15
2.2 多维函数分析初步 18
2.2.1 多维标量函数的梯度向量 18
2.2.2 多维向量函数的Jacobi矩阵 19
2.3 拉格朗日乘子法基础 21
2.4 一阶误差分析方法原理 23
2.4.1 无等式约束条件下的一阶误差分析方法 23
2.4.2 含有等式约束条件下的一阶误差分析方法 25
第3章 参数估计方差的克拉美罗界分析 27
3.1 针对单目标定位场景下的克拉美罗界 27
3.1.1 无系统误差条件下的克拉美罗界 27
3.1.2 系统误差存在条件下的克拉美罗界 28
3.2 目标位置服从等式约束条件下的克拉美罗界 29
3.3 针对多目标定位场景下的克拉美罗界 30
3.3.1 无系统误差条件下的克拉美罗界 30
3.3.2 系统误差存在条件下的克拉美罗界 33
3.4 校正源存在条件下的克拉美罗界 34
3.4.1 校正源位置精确已知条件下的克拉美罗界 34
3.4.2 校正源位置误差存在条件下的克拉美罗界 36
3.5 未知偏置存在条件下的克拉美罗界 38
3.5.1 无系统误差条件下的克拉美罗界 38
3.5.2 系统误差存在条件下的克拉美罗界 40
第Ⅱ部分 无系统误差条件下的理论与方法篇
第4章 无系统误差条件下含单重二次等式约束和单辅助变量的
最小二乘定位理论与方法:模型a 45
4.1 非线性观测方程的伪线性化模型 45
4.2 关于向量t的若干预备结论 46
4.3 定位优化模型与数值求解算法 46
4.3.1 定位优化模型 46
4.3.2 数值求解算法 47
4.4 目标位置解Qcls-Ia-p的理论性能分析 49
4.5 定位算例与数值实验 52
4.5.1 定位算例1 52
4.5.2 定位算例2 55
第5章 无系统误差条件下含单重二次等式约束和单辅助变量的
最小二乘定位理论与方法:模型b 58
5.1 非线性观测方程的伪线性化模型 58
5.2 关于向量t的若干预备结论 59
5.3 定位优化模型与数值求解算法 59
5.3.1 定位优化模型 59
5.3.2 数值求解算法 60
5.4 目标位置解Qcls-Ib-p的理论性能分析 64
5.5 定位算例与数值实验 66
5.5.1 定位算例1 66
5.5.2 定位算例2 68
第6章 无系统误差条件下含双重二次等式约束和单辅助变量的
最小二乘定位理论与方法 71
6.1 非线性观测方程的伪线性化模型 71
6.2 关于向量t的若干预备结论 73
6.3 定位优化模型与数值求解算法 73
6.3.1 定位优化模型 73
6.3.2 数值求解算法 74
6.4 目标位置解Qcls-II-tp的理论性能分析 76
6.5 定位算例与数值实验 79
6.5.1 模型描述 79
6.5.2 数值实验 81
第7章 无系统误差条件下含双重二次等式约束和双辅助变量的
最小二乘定位理论与方法:模型a 83
7.1 非线性观测方程的伪线性化模型 83
7.2 关于向量t的若干预备结论 84
7.3 定位优化模型与数值求解算法 86
7.3.1 定位优化模型 86
7.3.2 数值求解算法 86
7.4 目标位置解Qcls-IIIa-p的理论性能分析 88
7.5 定位算例与数值实验 91
7.5.1 模型描述 91
7.5.2 数值实验 94
第8章 无系统误差条件下含双重二次等式约束和双辅助变量的
最小二乘定位理论与方法:模型b 96
8.1 非线性观测方程的伪线性化模型 96
8.2 关于向量t的若干预备结论 97
8.3 定位优化模型与数值求解算法 98
8.3.1 定位优化模型 98
8.3.2 数值求解算法 99
8.4 目标位置解Qcls-IIIb-p的理论性能分析 101
8.5 定位算例与数值实验 103
8.5.1 模型描述 104
8.5.2 数值实验 106
第9章 无系统误差条件下含三重二次等式约束和双辅助变量的
最小二乘定位理论与方法 108
9.1 非线性观测方程的伪线性化模型 108
9.2 关于向量t的若干预备结论 110
9.3 定位优化模型与数值求解算法 111
9.3.1 定位优化模型 111
9.3.2 数值求解算法 112
9.4 目标位置解Qcls-IV-tp的理论性能分析 115
9.5 定位算例与数值实验 119
9.5.1 模型描述 119
9.5.2 数值实验 122
第Ⅲ部分 系统误差存在条件下的理论与方法篇
第10章 系统误差存在条件下含单重二次等式约束和单辅助变量的
最小二乘定位理论与方法:模型a 127
10.1 非线性观测方程的伪线性化模型 127
10.2 关于向量t的若干预备结论 128
10.3 系统误差存在条件下第4章目标位置解Qcls-Ia-p的理论性能分析 129
10.4 定位优化模型与数值求解算法 133
10.4.1 定位优化模型 133
10.4.2 数值求解算法 134
10.5 目标位置解Qcls-Ia-s和系统参量解Qcls-Ia-s的理论性能分析 135
10.6 定位算例与仿真实验 139
10.6.1 定位算例1 139
10.6.2 定位算例2 145
第11章 系统误差存在条件下含单重二次等式约束和单辅助变量的
最小二乘定位理论与方法:模型b 150
11.1 非线性观测方程的伪线性化模型 150
11.2 关于向量t的若干预备结论 151
11.3 系统误差存在条件下第5章目标位置解Qcls-Ib-p的理论性能分析 152
11.4 定位优化模型与数值求解算法 155
11.4.1 算法1——仅估计目标位置u 155
11.4.2 算法2——联合估计目标位置u和系统参量w 156
11.5 目标位置解Qcls-Ib-s1、Qcls-Ib-s2和系统参量解Qcls-Ib-s2
的理论性能分析 158
11.5.1 目标位置解Qcls-Ib-s1的理论性能分析 158
11.5.2 目标位置解Qcls-Ib-s2和系统参量解Qcls-Ib-s2的理论性能分析 161
11.6 定位算例与仿真实验 164
11.6.1 定位算例1 164
11.6.2 定位算例2 170
第12章 系统误差存在条件下含双重二次等式约束和双辅助变量的
最小二乘定位理论与方法:模型a 176
12.1 非线性观测方程的伪线性化模型 176
12.2 关于向量t的若干预备结论 177
12.3 系统误差存在条件下第7章目标位置解Qcls-IIIa-p的理论性能分析 179
12.4 定位优化模型与数值求解算法 183
12.4.1 定位优化模型 183
12.4.2 数值求解算法 185
12.5 目标位置解Qcls-IIIa-s和系统参量解Qcls-IIIa-s的理论性能分析 186
12.6 定位算例与数值实验 190
12.6.1 模型描述 190
12.6.2 数值实验 195
第13章 系统误差存在条件下含双重二次等式约束和双辅助变量的
最小二乘定位理论与方法:模型b 200
13.1 非线性观测方程的伪线性化模型 200
13.2 关于向量t的若干预备结论 202
13.3 系统误差存在条件下第8章目标位置解Qcls-IIIb-p的理论性能分析 203
13.4 定位优化模型与数值求解算法 206
13.4.1 算法1——仅估计目标位置u 206
13.4.2 算法2——联合估计目标位置u和系统参量w 207
13.5 目标位置解Qcls-IIIb-s1、Qcls-IIIb-s2和系统参量解Qcls-IIIb-s2
的理论性能分析 211
13.5.1 目标位置解Qcls-IIIb-s1的理论性能分析 211
13.5.2 目标位置解Qcls-IIIb-s2和系统参量解Qcls-IIIb-s2的理论性能分析 213
13.6 定位算例与数值实验 217
13.6.1 模型描述 217
13.6.2 数值实验 221
第Ⅳ部分 复杂定位场景下的理论与方法篇
第14章 多目标存在条件下含二次等式约束的最小二乘定位理论与方法 229
14.1 非线性观测方程的伪线性化模型 229
14.2 用于多目标联合定位的伪线性观测模型 230
14.3 关于向量tk和 的若干预备结论 231
14.4 定位优化模型与数值求解算法 232
14.4.1 定位优化模型 232
14.4.2 数值求解算法 234
14.5 目标位置解Qcls-Ia-ms和系统参量解Qcls-Ia-ms的理论性能分析 236
14.6 定位算例与仿真实验 242
14.6.1 定位算例1 242
14.6.2 定位算例2 251
第15章 校正源存在条件下含二次等式约束的最小二乘定位理论与方法 259
15.1 非线性观测方程的伪线性化模型 259
15.1.1 关于目标观测方程的伪线性化模型 259
15.1.2 关于校正源观测方程的伪线性化模型 260
15.2 关于向量t和 的若干预备结论 261
15.3 定位优化模型与数值求解算法 262
15.3.1 第一步参数估计 262
15.3.2 第二步参数估计 270
15.4 目标位置解Qcls-Ib-r和系统参量解Qcls-Ib-r的理论性能分析 272
15.5 定位算例与仿真实验 275
15.5.1 模型描述 275
15.5.2 数值实验 281
第16章 校正源位置误差存在条件下含二次等式约束的最小二乘定位理论与方法 287
16.1 非线性观测方程的伪线性化模型 287
16.1.1 关于目标观测方程的伪线性化模型 287
16.1.2 关于校正源观测方程的伪线性化模型 288
16.2 关于向量t和 的若干预备结论 290
16.3 定位优化模型与数值求解算法 290
16.3.1 第一步参数估计 291
16.3.2 第二步参数估计 299
16.4 目标位置解Qcls-IIIb-f的理论性能分析 299
16.5 定位算例与数值实验 302
16.5.1 模型描述 302
16.5.2 数值实验 311
第17章 未知偏置存在条件下含二次等式约束的最小二乘定位理论与方法 326
17.1 偏置抵消后的伪线性观测模型 326
17.2 关于向量t的若干预备结论 329
17.3 定位优化模型与数值求解算法 329
17.3.1 定位优化模型 329
17.3.2 数值求解算法 330
17.4 目标位置解Qcls-dp的理论性能分析 333
17.5 定位算例与数值实验 336
17.5.1 模型描述 336
17.5.2 数值实验 339
第18章 未知偏置和系统误差同时存在条件下含二次等式约束的
最小二乘定位理论与方法 342
18.1 偏置抵消后的伪线性观测模型 342
18.2 关于向量t和tw的若干预备结论 345
18.3 定位优化模型与数值求解算法 347
18.3.1 定位优化模型 347
18.3.2 数值求解算法 348
18.4 目标位置解Qcls-ds和系统参量解Qcls-ds的理论性能分析 351
18.5 定位算例与数值实验 355
18.5.1 模型描述 355
18.5.2 数值实验 358
附录A 第6章附录 362
附录B 第9章附录 363
附录C 第10章附录 364
C.1 证明式(10.7)成立 364
C.2 证明式(10.24)成立 364
C.3 证明式(10.30)成立 365
C.4 证明式(10.72)成立 366
C.5 推导式(10.91)至式(10.94)中各个子矩阵的表达式 367
C.6 推导式(10.107)至式(10.109)中各个子矩阵的表达式 369
附录D 第11章附录 371
D.1 推导式(11.102)至式(11.104)中各个子矩阵的表达式 371
D.2 推导式(11.119)至式(11.121)中各个子矩阵的表达式 373
附录E 第12章附录 375
E.1 证明式(12.9)成立 375
E.2 证明式(12.29)成立 376
E.3 证明式(12.35)成立 377
E.4 推导式(12.100)至式(12.103)中各个子矩阵的表达式 378
附录F 第13章附录 382
附录G 第14章附录 385
附录H 第15章附录 386
H.1 证明式(15.19)成立 386
H.2 推导式(15.124)和式(15.125)中各个子矩阵的表达式 386
附录I 第16章附录 388
I.1 证明式(16.20)成立 388
I.2 证明式(16.49)成立 388
I.3 推导式(16.128)至式(16.130)中各个子矩阵的表达式 390
参考文献 392
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城