新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

国外电子与通信教材系列 硅超大规模集成电路工艺技术 理论、实践与模型 英文版 (美)普卢默(Plummer,J.D.) 2003年版

收藏
  • 大小:141.6 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
国外电子与通信教材系列 硅超大规模集成电路工艺技术 理论、实践与模型 英文版
作者: (美)普卢默(Plummer,J.D.)
出版时间: 2003年版
丛编项: 国外电子与通信教材系列
内容简介
  国外电子与通信教材。本书是美国斯坦福大学电气工程系“硅超大规模集成电路制造工艺”课程所使用的教材,该课程是为电气工程系微电子学专业的四年级本科生及一年级研究生开设的一门专业课。本书最大的特点是,不仅详细介绍了硅超大规模集成电路芯片生产制造相关的实际工艺技术,而且还着重讲解了这些工艺技术背后的科学原理。特别是对于每一步单项工艺技术,书中都通过工艺模型和工艺模拟软件,非常形象直观地给出了实际工艺过程的物理图像。同时全书还对每一步单项工艺技术所要用到的测量方法做了详细的介绍,对于工艺技术与工艺模型的未来发展趋势也做了必要的分析讨论。另外,本书每一章后面都附有相关内容的参考文献,同时还附有大量习题。对于我国高等院校微电子学专业的教师及学生,本书是一本不可多得的优秀教材和教学参考书,并可供相关领域的工程技术人员学习参考。
目录
Chapter 1 lntroduction and Histerial Perspeetive
1.1 Introduction
1.2 Integrated Circuits and the Planar Ptocess--Key Inventions That Made
It AII Possible
1.3 Semiconductors
1.4 Semiconductor Devices
1.4.l PN Diodes
1.4.2 MOS Transistors
1.4.3 Bipolar Junction Transistors
1.5 Semiconductor Technoloy Families
1.6 Modern Scientific Discovery-Experiments Theory, and
Computer Simulation
1.7 The Plan For This Book
1.8 Summary of Key Ideas
1.9 References
1.10 Problems
Chapter 2 Modem CMOS Technelogy
2.1 Introduction
2.2 CMOS Proeess Flow
2.2.1 The Beginning-Choosing a Substrate
2.2.2 Active Region Formation
2.2.3 Process Option for Device Isolation-Shallow Trench Isolation
2.2.4 N and P Well Formation
2.2.5 Process Options for Adive Region and Well Formation
2.2.6 Gate Formation.
2.2.7 Tip or Extension (LDD) Formation
2.2.8 Source/Drain Formation
2.2.9 Contact and Local Interconned Formation
2.2.10 Multilevel Metal Formation
2.3 Summary of Key Ideas
2.4 Probems
Chapter 3 Crystal Growth, Wafer Fabrication and Basic Properties
of Silicon Wafers
3.1 Introduction
3.2 Historical Development and Basic Concepts
3.2.1 Crystal Structure
3.2.2 Defects in Crystals
3.2.3 Raw Materials and Purification
3.2.4 Czochralski and Float-Zone Crystal Growth Methods
3.2.5 Wafer Preparation and Specilication
3.3 Manufacturing Methods and Equipment
3.4 Measurement Methods
3.4.1 Electrical Measurements
3.4.1.1 Hot Point Probe
3.4.1.2 Sheet Resistance
3.4.1.3 Hall Effect Measurements
3.4.2 Physical Measurements
3.4.2.1 Defect Etches
3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR)
3.4.2.3 Electron Microscopy
3.5 Models and Simulation
3.5.1 Czochralski Crystal Growth
3.5.2 Dopant Incorporation during CZ Crystal Growth
3.5.3 Zone Refiniog and FZ Growth
3.5.4 Point Defects
3.5.5 Oxygen in Silicon
3.5.6 Carbon in Silicon
3.5.7 Simulation
3.6 Limits and Future Trends in Technologies and Models
3.7 Summary of Key Ideas
3.8 References
3.9 Problems
Chapter 4 Semiconductor Manufacturing--Clean Rooms Wafer Cleaning
and Gettering
4.1 Introduction
4.2 Historical Development and Basic Concepts
4.2.1 Level l Contamination Reduction: Clean Fadories
4.2.2 Level 2 Contamination Reduction: Wafer Cleaning
4.2.3 Lsvel 3 Contamination Reduction: Gettering
4.3 Manufacturing Methods and Equipment
4.3.1 Lsvel 1 Contamination Reduction: Clean Factories
4.3.2 Level 2 Contamination Reduction: Wafer Cleaning
4.3.3 Level 3 Contamination Reduction: Gettering.
4.4 Measurement Methods
4.4.1 Level 1 Contamination Reduction: Clean Factories
4.4.2 Level 2 Contamination Reduction: Wafer Cleaning
4.4.3 Level 3 Contamination Reduction: Gettering
4.5 Models and Simulation
4.5.1 Level 1 Contamination Reduction: Clean Factories
4.5.2 Level 2 Contamination Reduction: Wafer Cleaning
4.5.3 Level 3 Contamination Reduction: Gettering
4.5.3.1 Step 1: Making the Metal Atoms Mobile
4.5.3.2 Step 2: Metal Diffusion to the Gettering Site
4.5.3.3 Step 3: Trapping the Metal Atoms at tbe Gettering Site
4.6 Limits and Future Trends in Technologies and Models
4.7 Summary of Key Ideas
4.7 References
4.9 Problems
Chapter 5 Lithography
5.1 Introduction
5.2 Historical Development and Basic Concepts
5.2.1 Light Sources
5.2.2 Wafer Exposure Systems
5.2.2.1 Optics Basics-Ray Tracing and Diffraction
5.2.2.2 Projection Systems (Fraunhofer Diffraction)
5.2.2.3 Contact and Proximity Systems (Fresnel Diffraction)
5.2.3 Photoresists
5.2.3.1 g-line and i-line Resists
5.2.3.2 Deep Ultraviolet (DUV) Resists
5.2.3.3 Basic Properties and Characterization of Resists
5.2.4 Mask Engineering-Optical Proximity Correction and Phase Shifiting
5.3 Manufacturing Methods and Equipment
5.3.1 Wafer Exposure Systems
5.3.2 Photoresists
5.4 Measurement Methods
5.4.1 Measurement of Mask Features and Defects
5.4.2 Measurement of Resist Patterns
5.4.3 Measurement of Etched Featrnes
5.5 Models and Simulation
5.5.1 Wafer Exposure Systems
5.5.2 Optical Intensity Pattern in the Photoresist
5.5.3 Photoresist Exposme
5.5.3.1 g-line and i-line DNQ Resists
5.5.3.2 DUV Resists
5.5.4 Postexposure Bake (PEB)
5.5.4.1 g-line and i-line DNQ Resists
5.5.4.2 DUV Resists
5.5.5 Photoresist Developing
5.5.6 Photoresist Postbake
5.5.7 Advanced Mask Engineering
5.6 Limits and Future Trends in Technologies and Models
5.6.1 Electron Beam Lithography
5.6.2 X-ray Lithography
5.6.3 Advanced Mask Engineering
5.6.4 New Resists
5.7 Sammary of Key Ideas
5.8 References
5.9 Problems
Chapter 6 Thermal Oxidation and the Si/SiO2 Interface
6.1 Introduction
6.2 Historical Development and Basic Concepts
6.3 Manufacturing Methods and Equipment
6.4 Measarement Methods
6.4.1 Physical Measurements
6.4.2 Optical Measurements
6.4.3 Electrical Measurements-The MOS Capacitor
6.5 Models and Simulation
6.5.1 First-Order Planar Growth Kinetic -The Linear Parabolic Model
6.5.2 Other Models for Planar Oxidation Kinetics
6.5.3 Thin Oxide SiO2 Growth Kinetics
6.5.4 Dependence of Growth Kinetics on Pressure
6.5.5 Dependence of Growth Kinetics on Crystal Orientation
6.5.6 Mixed Ambient Growth Kinetics
6.5.7 2D SiO2 Growth Kinetics
6.5.8 Advanced Point Defect Based Models for Oxidation
6.5.9 Substrate Doping Effects
6.5.10 Polysilicon Oxidation
6.5.11 Si3N4 Growth and Oxidation Kinetics
6.5.12 Silicide Oxidation
6.5.13 Si/SiO2 Interface Charges
6.5.14 Complete Oxidation Module Simulation
6.6 Limits and Future Trends in Technologies and Models
6.7 Summary of Key Ideas
6.8 References
6.9 Ptoblems
Chapter 7 Dopant Diffusion
7.1 Introduction
7.2 Historical Development and Basic Concepts
7.2.1 Dopant Solid Solubility
7.2.2 Diffusion from a Macroscopic Viewpoint
7.2.3 Analytic Solutions of the Difusion Equation
7.2.4 Gaussian Solution in an Infinite Medium
7.2.5 Gaussian Solution Near a Surface
7.2.6 Error-Function Solution in an Infinite Medium
7.2.7 Error-Function Solution Near a Surface
7.2.8 Intrinsic Diffusion Coefficients of Dopants in Silicon
7.2.9 Effect of Successive Diffusion Steps
7.2.10 Design and Evaluation of Diffused Layers
7.2.11 Summary of Basic Diffusion Concepts
7.3 Manufacturing Methods and Equipment
7.4 Measurement Methods
7.4.1 SIMS
7.4.2 Spreading Resistance
7.4.3 Sheet Resistance
7.4.4 Capacitance Voltage
7.4.5 TEM Cross Section
7.4.6 2D Electrical Measurements Using Scanning Probe Microscopy
7.4.7 Inverse Electrical Measmements
7.5 Models and Simulation
7.5.1 Numerical Solutions of the Diffusion Equation
7.5.2 Modifications to Fick's Laws to Account for Electric Field Effects
7.5.3 Modifications to Fick's Laws to Account for
Concentration-Dependent Diffusion
7.5.4 Segregation
7.5.5 Interfacial Dopant Pileup
7.5.6 Summary of the Macroscopic Diffusion Approach
7.5.7 Tbe Physical Basis for Diffusion at an Atomic Scale
7.5.8 Oxidation-Enhanced or -Retarded Diffusion
7.5.9 Dopant Diffusion Occurs by Both I and V
7.5.10 Activation Energy for Self-Diffusion and Dopant Ditffusion
7.5.11 Dopant-Defect Interactions
7.5.12 Chemical Equilibrium Formulation for Dopant-Defect Interactions
7.5.13 Simplified Expression for Modeling
7.5.14 Charge State Effects
7.6 Limits and Future Trends in Technologies and Models
7.6.1 Doping Methods
7.6.2 Advaoced Dopant Profile Modeling-Fully Kinetic Description
of Dopant-Defect Interactions
7.7 Summary of Key Ideas
7.8 References
7.9 Problems
Chapter 8 lon Implantation
8.1 Introduction
8.2 Historical Development and Basic Concepts
8.2.1 Implants in Real Silicon-The Role of the Crystal Structure
8.3 Manufacturing Methods and Equipment
8.3.1 High-Energy Implants
8.3.2 Ultralow Energy Implants
8.3.3 lon Beam Heating
8.4 Measurement Methods
8.5 Models and Simulations
8.5.1 Nuclear Stopping
8.5.2 Nonlocal Electronic Stopping
8.5.3 Local Electronic Stopping
8.5.4 Total Stopping Powers
8.5.5 Damage Production
8.5.6 Damage Annealing
8.5.7 Solid-Phase Epitaxy
8.5.8 Dopant Activation
8.5.9 Transient-Enhanced Diffusion
8.5.1O Atomic-Level Understanding of TED
8.5.11 Effects on Devices
8.6 Limits and Future Trends in Technologies and Models
8.7 Summary of Key Ideas
8.8 References
8.9 Problems
Chapter 9 Thin Film Deposition
9.1 Introduction
9.2 Historical Development and Basic Concepts
9.2.1 Chemical Vapor Deposition (CVD)
9.2.1.1 Atmospheric Pressure Chemical Vapor Deposition (APCVD)
9.2.1.2 Low-Pressure Chemical Vapor Deposition (LPCVD)
9.2.1.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD)
9.2.1.4 High-Density Plasma Chemical Vapor Deposition
(HDPCVD)
9.2.2 Physical Vapor Deposition (PVD)
9.2.2.1 Evaporation
9.2.2.2 Sputter Deposition
9.3 Manufacturing Methods
9.3.1 Epitaxial Silicon Deposition
9.3.2 Polycrystalline Silicon Deposition
9.3.3 Silicon Nitride Deposition
9.3.4 Silicon Dioxide Deposition
9.3.5 A1 Deposition
9.3.6 Ti and Ti-W Deposition
9.3.7 W Deposition
9.3.8 TiSi2 and WSi2 Deposition
9.3.9 TiN Deposition
9.3.10 Cu Deposition
9.4 Measurement Methods
9.5 Models and Simulation
9.5.1 Models for Deposition Simulations
9.5.1.1 Models in Physically Based Simulators Such as SPEEDIE
9.5.1.2 Models for Different Types of Deposition Systems
9.5.1.3 Comparing CVD and PVD and Typical Parameter Values
9.5.2 Simulations of Deposition Using a Physically Based
Simulator, SPEEDIE
9.5.3 Other Deposition Simulations
9.6 Limits and Future Trends in Technologies and Models
9.7 Summary of Key Ideas
9.8 References
9.9 Problems
Chapter le Etching
10.1 Introduction
10.2 Historical Development and Basic Concepts
10.2.1 Wet Etching
10.2.2 Plasma Etching
10.2.2.1 Plasma Etching Mechanisms
10.2.2.2 Types of Plasma Etch Systems
10.2.2.3 Summary of Plasma Systems and Mechanisms
10.3 Manufacturing Methods
10.3.1 Plasma Etching Conditions and Issues
10.3.2 Plasma Etch Methods for Various Films
10.3.2.1 Plasma Etching Silicon Dioxide
10.3.2.2 Plasma Etching Polysilicon
10.3.2.3 Plasma Etching Aluminum
10.4 Measurement Methods.
10.5 Modek and Simulation.
10.5.1 Models for Etching Simulation
10.5.2 Etching Models----Linear Etch Model
10.5.3 Etching Models----Saturation/Adsorption Model for
lon-Enbanced Etching
10.5.4 Etching Models----More Advanced Models
10.5.5 Other Etching Simulation
10.6 Limits and Future Trends in Technologies and Models
10.7 Summary of Key Ideas
10.8 References
10.9 Problems
Chapter 11 Back-End Teehnology
11.1 Introduction
11.2 Historical Development and Basic Concepts
11.2.1 Contacts
11.2.2 Interconnects and Vias
11.2.3 Dielectrics
11.3 Manufacturing Methods and Equipment
11.3.1 Silicided Gates and Source/Drain Regions
11.3.2 First-level Dielectric Processing
11.3.3 Contact Formation
11.3.4 Global Interconnects
11.3.5 IMD Deposition and Planarization
11.3.6 Via Formation
11.3.7 Final Steps
11.4 Measurement Methods
11.4.1 Morphological Measurements
11.4.2 Electrical Measurements
11.4.3 Chemical and Stractural Measurements
11.4.4 Mechanical Measurements
11.5 Models and Simulation
11.5.1 Silicide Formation
11.5.2 Chemical-Mechanical Polishing
11.5.3 Reflow
11.5.4 Grain Growth
11.5.5 Diffusion in Polycrystalline Materials
11.5.6 Electromigration
11.6 Limits and Future Trends in Technologies and Models
11.7 Summary of Key Ideas
11.8 References
11.9 Problems
Appendices
A.1 Standard Prefixes
A.2 Useful Conversions
A.3 Physical Constants
A.4 Physical Properties of Silicon
A.5 Properties of Insulators Used in Silicon Technology
A.6 Color Chart for Deposited Si3N4 Films Observed Perpendicularly under
Daylight Fluorescent Lighting
A.7 color Chart for Thermally Grown SiO2 Films Observed Perpendicularly
under Daylight Fluorescent Lighting
A.8 Irwin Curves
A.9 Error Function
A.10 List of Important Symbols
A.11 List of Common Acronyms
A.12 Tables in Text
A.13 Answers to Selected Problems
Index
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城