新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

变分法(原书第四版 英文版)[(瑞士)斯特沃 著] 2012年版

收藏
  • 大小:59.19 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
变分法(原书第四版 英文版)
作者:(瑞士)斯特沃 著
出版时间:2012年版
内容简介
  《变分法(第4版)》是《变分法》第四版,主要讲述在非线性偏微分方程和哈密顿系统中的应用,继第一版出版十八年再次全新呈现。整《变分法(第4版)》都做了大量的修改,仅500多条参考书目就将其价值大大提升。第四版中主要讲述变分微积分,增加了该领域的最新进展。这也是一部变分法学习的教程,特别讲述了yamabe流的收敛和胀开现象以及最新研究发现的调和映射和曲面中热流的向后小泡形成。
目录
Chapter I.the direct methods in the calculus of variations
1.lower semi-continuity
degenerate elliptic equations
-minimal partitioning hypersurfaces
-minimal hypersurfaces in riemannian manifolds
-a general lower semi-continuity result
2.constraints
semilinear elliptic boundary value problems
-perron's method in a variational guise
-the classical plateau problem
3.compensated compactness
applications in elasticity
-convergence results for nonlinear elliptic equations
-hardy space methods
4.the concentration-compactness principle
existence of extremal functions for sobolev embeddings
5.ekeland's variational principle
existence of minimizers for quasi-convex functionals
6.duality
hamiltonian systems
-periodic solutions of nonlinear wave equations
7.minimization problems depending on parameters
harmonic maps with singularities
Chapter Ⅱ.minimax methods
1.the finite dimensional case
2.the palais-smale condition
3.a general deformation lemma
pseudo-gradient flows on banach spaces
-pseudo-gradient flows on manifolds
4.the minimax principle
closed geodesics on spheres
5.index theory
krasnoselskii genus
-minimax principles for even functional
-applications to semilinear elliptic problems
-general index theories
-ljusternik-schnirelman category
-a geometrical si-index
-multiple periodic orbits of hamiltonian systems
6.the mountain pass lemma and its variants
applications to semilinear elliptic boundary value problems
-the symmetric mountain pass lemma
-application to semilinear equa- tions with symmetry
7.perturbation theory
applications to semilinear elliptic equations
8.linking
applications to semilinear elliptic equations
-applications to hamil- tonian systems
9.parameter dependence
10.critical points of mountain pass type
multiple solutions of coercive elliptic problems
11.non-differentiable fhnctionals
12.ljnsternik-schnirelman theory on convex sets
applications to semilinear elliptic boundary value problems
Chapter Ⅲ.Limit cases of the palais-smale condition
1.pohozaev's non-existence result
2.the brezis-nirenberg result
constrained minimization
-the unconstrained case: local compact- ness
-multiple solutions
3.the effect of topology
a global compactness result, 184 -positive solutions on annular-shaped regions, 190
4.the yamabe problem
the variational approach
-the locally conformally flat case
-the yamabe flow
-the proof of theorem4.9 (following ye [1])
-convergence of the yamabe flow in the general case
-the compact case ucc
-bubbling: the casu
5.the dirichlet problem for the equation of constant mean curvature
small solutions
-the volume functional
- wente's uniqueness result
-local compactness
-large solutions
6.harmonic maps of riemannian surfaces
the euler-lagrange equations for harmonic maps
-bochner identity
-the homotopy problem and its functional analytic setting
-existence and non-existence results
-the heat flow for harmonic maps
-the global existence result
-the proof of theorem 6.6
-finite-time blow-up
-reverse bubbling and nonuniqueness
appendix a
sobolev spaces
-hslder spaces
-imbedding theorems
-density theorem
-trace and extension theorems
-poincar4 inequality
appendix b
schauder estimates
-lp-theory
-weak solutions
-areg-ularityresult
-maximum principle
-weak maximum principle
-application
appendix c
frechet differentiability
-natural growth conditions
references
index
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城