新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

单纯同伦理论 英文影印版 [格兹,JohnF.Jardine 著] 2014年版

收藏
  • 大小:81.87 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
单纯同伦理论 英文影印版
作者:格兹,JohnF.Jardine 著
出版时间:2014年版
内容简介
  Many of the original research and survey monographs ln pure and applied mathematics published by Birkh iuser in recent decades have been groundbreaking and have come to be regarded as found。 ational to the SUbject.Through the MBC Series,a select number ofthese modern classics,entirely uncorrected,are being released in paperback Iand as eBooks)to ensure that these treasures remainaccessible to new generations of students,scholars,and reseat-chers。
目录
Chapter l Simplicial sets

1.Basic definitions

2.Realization

3.Kan complexes

4.Anodyne extensions

5.Function complexes

6.Simplicial homotopy

7.Simplicial homotopy groups

8.Fundamental groupoid

9.Categories of fibrant objects

10.Minimal fibrations

11.The closed model structure

Chapter II Model Categories

1.Homotopical algebra

2.Simplicial categories

3.Simplicial model categories

4.The existence of simplicial model category structures

5.Examples of simplicial model categories

6.A generalization of Theorem 4.1

7.Quillen’S total derived functor theorem

8.Homotopy cartesian diagrams

Chapter III Classical results and constructions

1.The fundamental groupoid.revisited

2.Simplicial abelian groups

3.The Hurewicz map

4.The Ex∞functor

5.The Kan suspension

Chapter IV Bisimplicial sets

1.Bisimplicial sets:first properties

2.Bisimplicial abelian groups

2.1.The translation object

2.2 The generalized Eilenberg-Zilber theorem

3.Closed model structures for bisimplicial sets

3.1.The Bousfield-Kan structure

3.2.The Reedy structure

3.3.The Moerdijk structure

4.The Bousfield―Friedlander theorem

5.Theorem B and group completion

5.1.The’serre spectral sequence

5.2.Theorem B

5.3.The group completion theorem

Chapter V Simplicial groups

1.Skeleta

2.Principal fibrations I:simplicial G-spaces

3.Principal fibrations II:classifications

4.Universal cocycles and WG

5.The loop group construction

6.Reduced simplicial sets,Milnor’S FK-construction

7.Simplicial groupoids

Chapter VI The homotopy theory of towers

1.A model category structure for towers of spaces

2.The spectral sequence of a tower of fibrations

3.Postnikov towers

4.Local coefficients and equivariant cohomology

5.On k-invariants

6.Nilpotent spaces

Chapter VII Reedy model categories

1.Decomposition of simplicial objects

2.Reedy model category structures

3.Geometric realization

4.Cosimplicial spaces

Chapter VIII Cosimplicial spaces:applications

1.The homotopy spectral sequence of a cosimplicial space

2.Homotopy inverse limits

3.Completions

4.Obstruction theory

Chapter IX Simplicial functors and homotopy coherence

1.Simplicial functors

2.The Dwyer-Kan theorem

3.Homotopy coherence

3.1.Classical homotopy COherence

3.2.Homotopy coherence:an expanded version

3.3.Lax functors

3.4.The Grothendieck construction

4.Realization theorems

Chapter X Localization

1.Localization with respect to a map

2.The closed model category structure

3.Bousfield localization.

4.A model for the stable homotopy category

References

Index
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城