新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

摩擦学原理 第2版 英文版 温诗铸,黄平 2017年版

收藏
  • 大小:94.99 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
摩擦学原理 第2版 英文版
作者: 温诗铸,黄平
出版时间: 2017年版
内容简介
  本书汇集摩擦学研究的*新进展及作者和其同事从事该领域的研究成果,系统地阐述摩擦学的基本原理与应用,全面反映现代摩擦学的研究状况和发展趋势。全书共21章,由润滑理论与润滑设计、摩擦磨损机理与控制、应用摩擦学等3部分组成。除摩擦学传统内容外,还论述了摩擦学与相关学科交叉而形成的研究领域。本书针对工程实际中的各种摩擦学现象,着重阐述摩擦过程中的变化规律和特征,进而介绍基本理论、分析计算方法以及实验测试技术,并说明它们在工程中的实际应用。本书可作为机械设计与理论专业的研究生教材以及高等院校机械工程各类专业师生的教学参考书,也可以供从事机械设计和研究的工程技术人员参考。
目录
Contents
AbouttheAuthorsxvii
SecondEditionPrefacexix
Prefacexxi
Introductionxxiii
PartILubricationTheory1
1PropertiesofLubricants3
1.1LubricationStates3
1.2DensityofLubricant5
1.3ViscosityofLubricant7
1.3.1DynamicViscosityandKinematicViscosity7
1.3.1.1DynamicViscosity7
1.3.1.2KinematicViscosity8
1.3.2RelationshipbetweenViscosityandTemperature9
1.3.2.1Viscosity–TemperatureEquations9
1.3.2.2ASTMViscosity–TemperatureDiagram9
1.3.2.3ViscosityIndex10
1.3.3RelationshipbetweenViscosityandPressure10
1.3.3.1RelationshipsbetweenViscosity,TemperatureandPressure11
1.4Non-NewtonianBehaviors12
1.4.1Ree–EyringConstitutiveEquation12
1.4.2Visco-PlasticConstitutiveEquation13
1.4.3CircularConstitutiveEquation13
1.4.4Temperature-DependentConstitutiveEquation13
1.4.5Visco-ElasticConstitutiveEquation14
1.4.6NonlinearVisco-ElasticConstitutiveEquation14
1.4.7ASimpleVisco-ElasticConstitutiveEquation15
1.4.7.1Pseudoplasticity16
1.4.7.2Thixotropy16
1.5WettabilityofLubricants16
1.5.1WettingandContactAngle17
1.5.2SurfaceTension17
1.6MeasurementandConversionofViscosity19
1.6.1RotaryViscometer19
1.6.2Off-BodyViscometer19
1.6.3CapillaryViscometer19
References21
2BasicTheoriesofHydrodynamicLubrication22
2.1ReynoldsEquation22
2.1.1BasicAssumptions22
2.1.2DerivationoftheReynoldsEquation23
2.1.2.1ForceBalance23
2.1.2.2GeneralReynoldsEquation25
2.2HydrodynamicLubrication26
2.2.1MechanismofHydrodynamicLubrication26
2.2.2BoundaryConditionsandInitialConditionsoftheReynoldsEquation27
2.2.2.1BoundaryConditions27
2.2.2.2InitialConditions28
2.2.3CalculationofHydrodynamicLubrication28
2.2.3.1Load-CarryingCapacityW28
2.2.3.2FrictionForceF28
2.2.3.3LubricantFlowQ29
2.3ElasticContactProblems29
2.3.1LineContact29
2.3.1.1GeometryandElasticitySimulations29
2.3.1.2ContactAreaandStress30
2.3.2PointContact31
2.3.2.1GeometricRelationship31
2.3.2.2ContactAreaandStress32
2.4EntranceAnalysisofEHL34
2.4.1ElasticDeformationofLineContacts35
2.4.2ReynoldsEquationConsideringtheEffectofPressure-Viscosity35
2.4.3Discussion36
2.4.4GrubinFilmThicknessFormula37
2.5GreaseLubrication38
References40
3NumericalMethodsofLubricationCalculation41
3.1NumericalMethodsofLubrication42
3.1.1FiniteDifferenceMethod42
3.1.1.1HydrostaticLubrication44
3.1.1.2HydrodynamicLubrication44
3.1.2FiniteElementMethodandBoundaryElementMethod48
3.1.2.1FiniteElementMethod(FEM)48
3.1.2.2BoundaryElementMethod49
3.1.3NumericalTechniques51
3.1.3.1ParameterTransformation51
3.1.3.2NumericalIntegration51
3.1.3.3EmpiricalFormula53
3.1.3.4SuddenThicknessChange53
3.2NumericalSolutionoftheEnergyEquation54
3.2.1ConductionandConvectionofHeat55
3.2.1.1ConductionHeatHd55
3.2.1.2ConvectionHeatHv55
3.2.2EnergyEquation56
3.2.3NumericalSolutionofEnergyEquation59
3.3NumericalSolutionofElastohydrodynamicLubrication60
3.3.1EHLNumericalSolutionofLineContacts60
3.3.1.1BasicEquations60
3.3.1.2SolutionoftheReynoldsEquation62
3.3.1.3CalculationofElasticDeformation62
3.3.1.4Dowson–HigginsonFilmThicknessFormulaofLineContactEHL64
3.3.2EHLNumericalSolutionofPointContacts64
3.3.2.1TheReynoldsEquation65
3.3.2.2ElasticDeformationEquation66
3.3.2.3Hamrock–DowsonFilmThicknessFormulaofPointContactEHL66
3.4Multi-GridMethodforSolvingEHLProblems68
3.4.1BasicPrinciplesofMulti-GridMethod68
3.4.1.1GridStructure68
3.4.1.2DiscreteEquation68
3.4.1.3Transformation69
3.4.2NonlinearFullApproximationSchemefortheMulti-GridMethod69
3.4.3VandWIterations71
3.4.4Multi-GridSolutionofEHLProblems71
3.4.4.1IterationMethods71
3.4.4.2IterativeDivision72
3.4.4.3RelaxationFactors73
3.4.4.4NumbersofIterationTimes73
3.4.5Multi-GridIntegrationMethod73
3.4.5.1TransferPressureDownwards74
3.4.5.2TransferIntegralCoefficientsDownwards74
3.4.5.3IntegrationontheCoarserMesh74
3.4.5.4TransferBackIntegrationResults75
3.4.5.5ModificationontheFinerMesh75
References76
4LubricationDesignofTypicalMechanicalElements78
4.1SliderandThrustBearings78
4.1.1BasicEquations78
4.1.1.1ReynoldsEquation78
4.1.1.2BoundaryConditions78
4.1.1.3ContinuousConditions79
4.1.2SolutionsofSliderLubrication79
4.2JournalBearings81
4.2.1AxisPositionandClearanceShape81
4.2.2InfinitelyNarrowBearings82
4.2.2.1Load-CarryingCapacity83
4.2.2.2DeviationAngleandAxisTrack83
4.2.2.3Flow84
4.2.2.4FrictionalForceandFrictionCoefficient84
4.2.3InfinitelyWideBearings85
4.3HydrostaticBearings88
4.3.1HydrostaticThrustPlate89
4.3.2HydrostaticJournalBearings90
4.3.3BearingStiffnessandThrottle90
4.3.3.1ConstantFlowPump91
4.3.3.2CapillaryThrottle91
4.3.3.3Thin-WalledOrificeThrottle92
4.4SqueezeBearings92
4.4.1RectangularPlateSqueeze93
4.4.2DiscSqueeze94
4.4.3JournalBearingSqueeze94
4.5DynamicBearings96
4.5.1ReynoldsEquationofDynamicJournalBearings96
4.5.2SimpleDynamicBearingCalculation98
4.5.2.1ASuddenLoad98
4.5.2.2RotatingLoad99
4.5.3GeneralDynamicBearings100
4.5.3.1InfinitelyNarrowBearings100
4.5.3.2SuperimpositionMethodofPressures101
4.5.3.3SuperimpositionMethodofCarryingLoads101
4.6GasLubricationBearings102
4.6.1BasicEquationsofGasLubrication102
4.6.2TypesofGasLubricationBearings103
4.7RollingContactBearings106
4.7.1EquivalentRadiusR107
4.7.2AverageVelocityU107
4.7.3CarryingLoadPerWidthW/b107
4.8GearLubrication108
4.8.1InvoluteGearTransmission109
4.8.1.1EquivalentCurvatureRadiusR110
4.8.1.2AverageVelocityU111
4.8.1.3LoadPerWidthW/b112
4.8.2ArcGearTransmissionEHL112
4.9CamLubrication114
References116
5SpecialFluidMediumLubrication118
5.1MagneticHydrodynamicLubrication118
5.1.1CompositionandClassificationofMagneticFluids118
5.1.2PropertiesofMagneticFluids119
5.1.2.1DensityofMagneticFluids119
5.1.2.2ViscosityofMagneticFluids119
5.1.2.3MagnetizationStrengthofMagneticFluids120
5.1.2.4StabilityofMagneticFluids120
5.1.3BasicEquationsofMagneticHydrodynamicLubrication121
5.1.4InfluenceFactorsonMagneticEHL123
5.2Micro-PolarHydrodynamicLubrication124
5.2.1BasicEquationsofMicro-PolarFluidLubrication124
5.2.1.1BasicEquationsofMicro-PolarFluidMechanics124
5.2.1.2ReynoldsEquationofMicro-PolarFluid125
5.2.2InfluenceFactorsonMicro-PolarFluidLubrication128
5.2.2.1InfluenceofLoad128
5.2.2.2MainInfluenceParametersofMicro-PolarFluid129
5.3LiquidCrystalLubrication130
5.3.1TypesofLiquidCrystal130
5.3.1.1TribologicalPropertiesofLyotropicLiquidCrystal131
5.3.1.2TribologicalPropertiesofThermotropicLiquidCrystal131
5.3.2DeformationAnalysisofLiquidCrystalLubrication132
5.3.3FrictionMechanismofLiquidCrystalasaLubricantAdditive136
5.3.3.1TribologicalMechanismof4-pentyl-4′-cyanobiphenyl136
5.3.3.2TribologicalMechanismofCholesterylOleylCarbonate136
5.4ElectricDoubleLayerEffectinWaterLubrication137
5.4.1ElectricDoubleLayerHydrodynamicLubricationTheory138
5.4.1.1ElectricDoubleLayerStructure138
5.4.1.2HydrodynamicLubricationTheoryofElectricDoubleLayer138
5.4.2InfluenceofElectricDoubleLayeronLubricationProperties142
5.4.2.1PressureDistribution142
5.4.2.2Load-CarryingCapacity143
5.4.2.3FrictionCoefficient144
5.4.2.4AnExample144
References145
6LubricationTransformationandNanoscaleThinFilmLubrication147
6.1TransformationsofLubricationStates147
6.1.1Thickness-RoughnessRatio??147
6.1.2TransformationfromHydrodynamicLubricationtoEHL148
6.1.3TransformationfromEHLtoThinFilmLubrication149
6.2ThinFilmLubrication152
6.2.1PhenomenonofThinFilmLubrication153
6.2.2TimeEffectofThinFilmLubrication154
6.2.3ShearStrainRateEffectonThinFilmLubrication157
6.3AnalysisofThinFilmLubrication158
6.3.1DifficultiesinNumericalAnalysisofThinFilmLubrication158
6.3.2Tichy’sThinFilmLubricationModels160
6.3.2.1DirectionFactorModel160
6.3.2.2SurfaceLayerModel161
6.3.2.3PorousSurfaceLayerModel161
6.4Nano-GasFilmLubrication161
6.4.1RarefiedGasEffect162
6.4.2BoundarySlip163
6.4.2.1SlipFlow163
6.4.2.2SlipModels163
......
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城