新太阳城

欢迎访问太阳城官网 ,学习、交流 分享 !

返回太阳城官网 |

凝聚态物理学中的量子场论 英文版 (英)AlexeiM.Tsvelik 著 2001年版

收藏
  • 大小:10.65 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
凝聚态物理学中的量子场论 英文版
作者:(英)AlexeiM.Tsvelik 著
出版时间:2001年版
内容简介
  这是一本介绍量子场论在凝聚态物理学中应用的好书。书中在介绍了量子场论的基本工具和概念后,着重叙述了量子场论在凝聚态物理学中应用。本书阐述简明、清晰,配有许多生动幽默的插图。内容分4部分,共25章。第一部分介绍了量子场论中的一些重要方法,如:路径积分、费曼图技术和重正化等。第2部分介绍了传统方法在金属电动力学、量子电动力学和A-B效应中的应用。第3部分和第4部分是非微扰技术的应用,主要处理涨落自旋系统,共形对称性,kondo链以及其它相关问题。读者对象:物理专业的师生、研究生、科研人员以及对量子场论有兴趣的人员。本书为英文版。
目录
Preface
Bibliography
405
Index
411
Ch. 1
Semiclassical introduction
1
Ch. 2
Second quantization and the electron gas
26
Ch. 3
Boson systems
78
Ch. 4
One-electron theory
125
Ch. 5
Density functional theory
182
Ch. 6
Electron-phonon interactions
210
Ch. 7
Superconductivity
232
Ch. 8
Semiclassical theory of conductivity in metals
285
Ch. 9
Mesoscopic physics
315
Ch. 10
The quantum Hall effect
342
Ch. 11
The Kondo effect and heavy fermions
383
1.1
Elementary excitations
1
1.2
Phonons
4
1.3
Solitons
7
1.4
Magnons
10
1.5
Plasmons
12
1.6
Electron quasiparticles
15
1.7
The electron-phonon interaction
17
1.8
The quantum Hall effect
19
2.1
A single electron
26
2.2
Occupation numbers
31
2.3
Second quantization for fermions
34
2.4
The electron gas and the Hartree-Fock approximation
42
2.5
Perturbation theory
50
2.6
The density operator
56
2.7
The random phase approximation and screening
60
2.8
Spin waves in the electron gas
71
3.1
Second quantization for bosons
78
3.2
The harmonic oscillator
80
3.3
Quantum statistics at finite temperatures
82
3.4
Bogoliubov''s theory of helium
88
3.5
Phonons in one dimension
93
3.6
Phonons in three dimensions
99
3.7
Acoustic and optical modes
102
3.8
Densities of states and the Debye model
104
3.9
Phonon interactions
107
3.10
Magnetic moments and spin
111
3.11
Magnons
117
4.1
Bloch electrons
125
4.2
Metals, insulators, and semiconductors
132
4.3
Nearly free electrons
135
4.4
Core states and the pseudopotential
143
4.5
Exact calculations, relativistic effects, and the structure factor
150
4.6
Dynamics of Bloch electrons
160
4.7
Scattering by impurities
170
4.8
Quasicrystals and glasses
174
5.1
The Hohenberg-Kohn theorem
182
5.2
The Kohn-Sham formulation
187
5.3
The local density approximation
191
5.4
Electronic structure calculations
195
5.5
The Generalized Gradient Approximation
198
5.6
More acronyms: TDDFT, CDFT, and EDFT
200
6.1
The Frohlich Hamiltonian
210
6.2
Phonon frequencies and the Kohn anomaly
213
6.3
The Peierls transition
216
6.4
Polarons and mass enhancement
219
6.5
The attractive interaction between electrons
222
6.6
The Nakajima Hamiltonian
226
7.1
The superconducting state
232
7.2
The BCS Hamiltonian
235
7.3
The Bogoliubov-Valatin transformation
237
7.4
The ground-state wave function and the energy gap
243
7.5
The transition temperature
247
7.6
Ultrasonic attenuation
252
7.7
The Meissner effect
254
7.8
Tunneling experiments
258
7.9
Flux quantization and the Josephson effect
265
7.10
The Ginzburg-Landau equations
271
7.11
High-temperature superconductivity
278
8.1
The Boltzmann equation
285
8.2
Calculating the conductivity of metals
288
8.3
Effects in magnetic fields
295
8.4
Inelastic scattering and the temperature dependence of resistivity
299
8.5
Thermal conductivity in metals
304
8.6
Thermoelectric effects
308
9.1
Conductance quantization in quantum point contacts
315
9.2
Multi-terminal devices: the Landauer-Buttiker formalism
324
9.3
Noise in two-terminal systems
329
9.4
Weak localization
332
9.5
Coulomb blockade
336
10.1
Quantized resistance and dissipationless transport
342
10.2
Two-dimensional electron gas and the integer quantum Hall effect
344
10.3
Edge states
353
10.4
The fractional quantum Hall effect
357
10.5
Quasiparticle excitations from the Laughlin state
361
10.6
Collective excitations above the Laughlin state
367
10.7
Spins
370
10.8
Composite fermions
376
11.1
Metals and magnetic impurities
383
11.2
The resistance minimum and the Kondo effect
385
11.3
Low-temperature limit of the Kondo problem
391
11.4
Heavy fermions
397
下载地址
新太阳城 新太阳城游戏 太阳城 太阳城官网 申博太阳城 申博太阳城